PHYSICS CHAPTERS

The science of everyday phenomena.

In this chapter, the calculation method of Coulomb's electrostatic force is shown, and explained from the basic structure of the atom. Electric dipoles are also studied.

Electrical components such as batteries, capacitors and resistors are investigated. The parameters of resistivity, resistance and conductance are shown to be related to each other and used in the application…

Electric currents are described from the foundation of atomic structure, including the ideas of electronic energy levels and band structure. The measurement of current density is also introduced.

The application of an electric current through a conducting loop of wire is shown to obey the basic conservation laws of charge and energy. Arrangements of resistors in series and…

The disturbance of space known as an electric field is introduced. The net electric field due to a system of point charges is calculated, then extended to systems of continuous…

A simple method, known as Gauss' law, is introduced for calculating the electric field due to charge distributions with high levels of spatial symmetry. The topics of electric flux, electric…

The phenomenon of magnetism is investigated through an analysis of electronic spin properties. The origin of Earth's magnetism is explained, together with its influence on the creation of the Aurora…

In this chapter we introduce the Biot-Savart method for calculating the magnetic field due to current-carrying wires. Faraday's law of electromagnetic induction is explained, together with examples of its application…

Electromagnetism, or radiation, is the interaction between self-propagating electric and magnetic fields. This concept is explained, together with calculation of root mean square values, the Poynting vector and radiation pressure.…